If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x=9=0
We move all terms to the left:
x^2+2x-(9)=0
a = 1; b = 2; c = -9;
Δ = b2-4ac
Δ = 22-4·1·(-9)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{10}}{2*1}=\frac{-2-2\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{10}}{2*1}=\frac{-2+2\sqrt{10}}{2} $
| 15+25m=20+0.5m | | 4(x+3)=32-6x | | 6*(x+4)=x-11 | | -0.49x+0.19x=9.3 | | 29=50+3y | | 5.2=a=-0.4 | | 5+3(q-4)=2((q+1 | | x^2+-1x=9=0 | | 4m+M2=4.35 | | 2(3x+5)-5x=13 | | 15p-0.50=$25p-0.25 | | 6-3.5x=26 | | 15p-0.50=$25-0.25 | | 63-2x=-9(2x+9) | | x+3.75=11.33 | | x^2+1x=9=0 | | -0.49−0.49x+0.190.19x=9.39.3 | | -31/3x=4/9 | | F(-4)=|x-3| | | 2x-(3)=55 | | 12z-11z-8z-z=18 | | 20x^2-13x-35=0 | | 6=-7w | | -2x+1/3=1/2 | | |2x+6|=1 | | (X+2)^2+(y-3)^2=15 | | 6x-5-2x+8=12(1/3x+1/4) | | 10x-7-9x-15=0 | | 7+-3f=3 | | 6x-2-3x=x+3+x | | 6i=2 | | 6x(x+4)=(-11) |